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"equilibrium" phase velocity of the longitudinal sound waves. 
When the internal mass moment is neglected (in the limit as ~-+~) from (4.3) it follows 

that in the transverse waves the electromagnetic quantities (n, H, E), and in the longitudinal 
waves the mechanical quantities (v, p) are the only ones perturbed. 

In addition to the two types of weak perturbations discussed here, we also have a solu- 
tion of (4.5) corresponding to the case when o = 0. This wave does not propagate through 
space and represents an arbitrarily small deviation in the entropy distribution from its value 
in the equilibrium state. From (4.5) it follows that in the entropic wave n = 0, H = E = 0, 
v=o and the only non-zero perturbations are those of density and entropy. 

The authors thank L.I. Sedov and V.V. Gogosov for discussing the paper. 
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NON-LINEAR EQUATIONS OF THE DYNAMICS OF AN ELASTIC MICROPOLAR MEDIUM* 

V.I. KONDAUROV 

The non-linear equations for a continuous elastic medium with three 
additional degrees of freedom associated with local rotation, are 
considered. Such an elastic medium is called micropolar /l/. The exist- 
ence of an elastic potential is proposed for it; thermal effects are 
neglected. 

The purpose of this paper is to study certain qualtiative properties 
of the equations that are closely associated with the concept of 
hyperbolicity. The complete set of equations is represented as a system 
of local conservation laws, closed by finite relationships yielding the 
rheology of the material. The possibility of such a representation is 
based /2, 3/ on the fact that the gradients of the particle displacment 
and angle of rotation are used as a measure of the deformation. Local 
conservation laws for the compatibility of the strain and velocity fields 
of fairly simple structure are formulated. 

The velocities of propgation of characteristic surfaces are studied 
for the dynamic equations for the general case of the material under 
consideration. The existence of real velocities, the necessary condition 
for hyperbolicity, results in a constraint on the form of the elastic 
potential function, which is an analog of the SE-inequality /4/ in the 
classical theory of non-linearly elastic media. 

The system of non-linear equations being studied is reduced to symmetric 
form by replacing the vector of the solution. The necessary condition 
for such a transformation /5/ is the existence of an additional energy 
conservation law that follows from the system under consideration. The 
symmetric form of the equations enables us to formulate the sufficient 
condition for hyperbolicity - the condition of convexity of the elastic 
potential in its arguments. An estimate is obtained for the growth of 
the solutions of the Cauchy problem and the ensuing uniqueness theorem. 
The presence of the symmetric form of the system enables a general form 
to be obtained for the transport equation that governs the rate of change 
of a weak discontinuity along a bicharacteristic. 

1. Fundamental equations. Let X be the radius-vector of a material particle of a 
body'in the reference configuration x. We assume that the displacement vector u = u(X, t) and 
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and the rotation vector 'p = 'p (s, t) are defined in x. This assumption corresponds to a 
micropolar medium /l/, which is the 'simplest case of a continuum with microstructure /6/. The 
particles of such a medium possess additional degrees of freedom, compared with ;the classical 
continuous medium, that are associated with rotation of the particle as a rigid whole. In the 
general case this rotation is not determined by the displacement field u. 

Let x = X + u be the particle radius-vector in the actual configuration,~ = (8xi&)/.r the 
mass flow rate, and F= VX and Q, = Vcp the gradients of the displacement and the rotation 
such that dx = FdX, dq = @dX, where. 

8' I (&q/at) Jx = 0 (1.1) 

is the angular velocity vector. 
If the mapping x = x(X, t) and cp = cp (X, t) are twice continuously differentiable every- 

where except possibly, singular surfaces, where A = det F # 0, then compatibility relation- 
ships in the variables X,t hold for the strain and velocity fields 

,(13F/6't) Ix - vv = 0, (a@/&) Ix - Vo, = 0 
which can be written in the form 

g-Div(v@I)=O, $-Div(rOI)=O (1.2) 

where the symbol Div denotes the divergence in the variables X and I is the unit matrix. 
In the variables x,t the divergent form of the relationships (1.2) will be the following 

(div is the divergence in the variables x):. 

We difine the matrices of components of the strain incompatibility tensors of the first 
and second kinds by the expressions 

Ktjm (Xa, t) I V,F,” - VJ,“‘, Hijm (X0, t) = VfDim - Viajm (1.3) 

The following relationships hold for the continuously differentiable functions F(X, t), 
v (X, t) and @ (X, t) and m(X, t): 

Kij”’ (X”, t) = 0, Hijm (X”, t) = 0 (1.4) 

In fact, by differentiating the relationship (1.2) written in a Cartesian rectangular 
coordinate system 

dF,m (X”, 0 dvrn Gy=. t) - 0, dFjrn (X”, 1) avm (X”, 0 - 
at 

0 

8X‘ at --- dX’ 

with respect to Xj and X' , and subtracting one from the other we obtain when the smoothness 
of the field um(Xa,t) is taken into account 

aKit"' (X0, t)/ dt = 0 (1.5) 

Since the gradient is Fi”‘(X’,t)=&‘” when ;=O, and therefore, Ki~"'(Xa,O)=O, then from 
the uniqueness of the solution of the ordinary differential equation (1.5) with zero initial 
data, the first of the relationships (1.4) follows. 

The validity of the second equation in (1.4) can be shown analogously if the incompatibil- 
ity tensor is IIij* (X", 0) = 0. 

In particular, it follows that relationships (1.4), which are strain compatibility 
relationships formulated in terms of the gradients F and 6 , are not independent equations 
with respect to (1.2). 

As can be seen from the definition of (1.31, the matrices of the components Kij” and Hij’” 
are antisymmetric in the subscripts i,j and only nine independent components exist. The 

matrices of these independent components, written in the form 

B;f'=@V F.m L 1 , @=&kvkcDjm 

where eijr is the unit antisymmetric tensor, will be called matrices of the Burgers tensor 
components of the first and second kinds. 

Therefore, the strain compatibility conditions follow from the strain and velocity 
compability conditions and are formulated as the conditons that the incompatibility tensors 
or Burgers tensor should equal zero. 

Let pO,p be the density of the body in the reference and actual configurations. The 

mass conservation law for a micropolar medium can be written in the form /I/ 
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PA = ~0, A = det F (l-6) 

Let J = J(X, t) and J = JT be a symmetric positive-definite tensor of the density of 
the moment of inertia of a micropolar medium. We assume for it that 

aJ z/x =CIJ-JJn (Qij=eikjok) (1.7) 

This assumption is the analog of relations for the rate of change of the momentofinertia 
of an absolutely rigid body 

where y = y(t) is the radius-vector of a point in the frame of reference associated with the 
centre of mass of the volume under consideration, and I is the unit tensor. If R=R(t) is 
an orthogonal tensor (RRr=I) describing the body rotation and being the analog of the axial 
vector cp , then Y = RY,, where yo= y (0) and y' = R'y, = KRTRy, = *and 1'-0J + 162 = 0. 

The divergent form of the local conservation law for the density of the moment of inertia 
is written in the Euler variables x, t in the form 

Let T = ~(v,X,t) be the stress vector, and m = m(v,X,t) the vector of a momentdefined 
on a piecewise-smooth surface $(X, t)=O with the normal v = &,/I V$l. The vectors r and m 
characterise the density of interaction of parts of the body separated by the surface under 
consideration. The fundamental Cauchy theorem defines the Piola-Kirchhoff stress tensor of 
the first kind and the moments tensor 

r=T(X,t)v, m=M(X,t)v, T#TT, M#Mr 

Let b and 1 be the density of the mass forces and moments. Then the local momentum and 
angular momentum conservation laws for a micropolar medium have the following form: 

PO G-DivT=pOb, pow -DivM=p&++l (1.8) 

The vector 6 in the angular momentum equation is an accompaniment to the Cauchy stress 
tensor A-'TFT so that p,,& = eilrTkaF,,i. 

Furthermore, we will assume that the material under consideration is hyperelastic, and 
for simplicity, homogeneous, i.e., an elastic potential W exists such that 

W = W(F, @, cp) (1.9) 
aw 

T=Po~, M=p,g, +s 

we will neglect thermal effects in the strain of such a medium. The constraints 
W (QF,detQ.Q@,det Q-Qq)=W (F,@,cp) 

eijkEFbj+s=O, QQT-I 

are imposed on the potential W. 
The first of these is the property of objectivity -the condition of invariance of the 

elastic potential relative to orthogonal transformations of the actual configuration. The 
second of the constraints follows from the expression p06‘ = eijkT*“F,’ and relations (1.9). 
Note that in the case of infinitesimal strains, the relation 

W=W(y,@), y=F-ecp 

follows from the second constraint. 
Therefore, the complete set of equations for the medium being studied can be written in 

the form of a set of differential conservation laws (l.l), (1.2), (1.7) and (1.8) and the 
finite rheological relations (1.9). The set of differential equations can be represented in a 
Cartesian rectangular coordinate system in the form 

T+$=,. a--1,2 ,..., 33, m-&2,3 

cp, '={p&l poppa, (pi, F,i, @it Jij] 

cp, m = {Tfm, M’“, 0, v%,,“‘, oiSam, 0) 

f= = @b‘, PO (1’ + 6’)q y*v 0, 0, GaJja - Ji”Gjl 

In expanded form the quasilinear system (1.10) can be written as follows 

(1.10) 
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av‘ ap j aw 2 aw mnj aw -- 
a: w axm aFm@Qnj axm 

acpj =bi 
q axm 

Ji+L_ bW 
aFnj saw a,j -- 

wax”-- axm 

aw a7, 
-maxm 

- x 1% + gi + eiadj%bd 

For the sequel it is convenient to use (1.11) in the matrix form 

(1.12) 

U, = (vtv atr (~1, F’,, @jy Jtf} 
a, $, y = I, 2, . . ., 33; i, j, m = 1, 2, 3 

2. Hyperbolicity conditions. Let us investigate the question of the hyperbolicity 
of (1.12) which is closely associated with the correctness of the Cauchy problem. By defini- 
tion /8/, system (1.12) is hyperbolic if all the eigennumbers of the matrix v,Begm, where vm 
is an arbitrary unit vector, are real and the number of their corresponding linearly independ- 
ent left eigenvectors of this matrix equals the number of equations in (1.12) for any given v,,,. 

We will obtain an equation forthe eigennumbers, or in other words, for the velocities 
of propagation of the characteristic surfaces. Let 9 (X, t) = 0 be the equation of such a 
surface, which is simultaneously a surface of.possible weak discontinuities /8/, c = -+/at/ 
1 V$I,v = V$/ 1 V$I is the velocity of propagation and the unit normal. Then, using the geometric 
and kinematic compatibility conditions /9/, we obtain on the surface of weak discontinuity 

(2.1) 

where [&&~3vl is the jump in the normal derivative of the solution defined by the formula 
al&&v = v&l,'dX'. 

The non-trivial solution [&i&l of the homogeneous linear system (2.1) exists if and 
only if the determinant of the coefficient matrix equals zero, i.e., 

det II - ~6,~ + v,Bm8”’ II = 0 (2.2) 

It is seen directly from (2.1) that c =O is a multiple root of (2.2). If c# 0, then 
it follows from (2.1) 

det c%k, -v, -$$& v, = 
ii Ii 

0 
m n 

PnA=(F,‘,@)mi), h,p=l,:! (..., 6; i,m,n=1,2,3 

whosesolvability conditionis 

i 

a*w 
v”lqqrvn 

ah@ > 0 

(2.3) 

(2.4) 

for all propagation directions determined by the normalv,, and all aL # 0. 
The constraint (2.4) on the form of the elastic potential W is a necessary condition for 

hyperbolicity and the analog of the SE-condition in the non-linear theory of elasticity 

/4, 7/. 
If inequality (2.4) holds, then system (1.11) possesses real propagation velocities of 

the characteristic surfaces. But it is impossible to say anything about the existence and 
linear independence of the eigenvectors of the matrix V,B,i3” by using only (2.4). 

We will formulate a sufficient condition for hyperbolicity. To do this, we will reduce 

system (1.10) to symmetric form as in /2, 3/. 
Direct substitution confirms the validity of the equations (E is the total energy densrty) 



v&s = p,,(b’oi + toi), u,dcp,” = d (p,E) 
v,dcp,“= d (T’“ui + @‘oi) 
(E = W + UiV’/Z + J” OiOj/2) 
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(2.5) 

Here 

Va = (Vi, war - PaSiT Tij, Mij, - '/,P,OiOj) 

Rewriting the second and third equations in (2.5) in the form 

dL" = d (va(paO - poE) = cp,‘dva 
dL”=d (v,cpam- a I T”“v. - Mime.) = yam dv, 

we can write system (1.10) in the form 

If we use the notation 

LNo = awav,avg, L=@O = ~~0 
LoB(1’ = PLmldvadv *, L,fjm = Lm” 

then from (2.7) we obtain the desired symmetric system 

(2.6) 

(2.7) 

(2.8) 

with the vector of the solution V= whose relation to the vector ua is determined by (2.6). 
We now note that if the matrix La*’ is positive-definite, then a non-degenerate trans- 

formation exists that simultaneously reduces the two symmetric matrices L,g’and v,L,pm to 
diagonal form, where vm is the normal vector. In this case system (2.8) is known to be 
hyperbolic. 

The positive-definiteness of Lag0 is equivalent to the convexity of the function E" in 
the arguments VB. The Legendre transformation of an arbitrary convex function M(v,) has 
the form H (2,) = 2,~‘~ - M (urn), I= = dh~lc%, and is itself a convex function. For the function 
I.' it equals H(q,“) = poE. Because PO >O and in view of the positive-definiteness of the 
tensor .I", the total energy E will be convex function provided the elastic potential W = 

w((F,', mai, cp') is convex, i.e., 

-g&hXi”> 0, Vh”#O 
X’W 

(2.9) 

It also follows from the convexity of w(n.) that the transformation of the initial 
system (1.12) into the symmetric system (2.8), associated with replacing the solution vector 

Vn = {L.~,o~,(F~,F~~,@;,J~~) by the vector (2.6), is non-degenerate, i.e., 

det 1) au,,'dVa 11 = det II duala(pyOII det !I dqY"i'ava 11 # 0 

Comparing the sufficient condition (2.9) with the necessary condition (2.4), it can be 
seen that (2.9) is known to be stronger than (2.4). 

3. Estimation of the growth of the solutions of the Cauchy problem. Let a 
symmetric hyperbolic system (2.8) be defined in a four-dimensional open domain Q of the 
variables S,t. The boundary aQ consists of a three-dimensional domain o(O) in the plane 
t =o. and of a piecewise-smooth surface r(S, t) = 0 located for t >O. We shall assume that 
YI'# 0, within the domain r( 0 and outside it r > 0. Let us also assume that 

Vy (K 0, &PO (Vv (X, t)) (3.1) 

Loem (VY (K t)), fa (VY (X, t)) E c, (a) 

At any point (x, t)E r let the normal to the surface r = 0 lie within the cone of 
normals to the characteristic surface corresponding to the maximum, in absolute value, c= 

c (V (S, 1). v), v = vri 1 Tr 1, i.e., the Hamilton-Jacobi inequality holds /8/ 

G(X,t)~lc(V,(X,t),v)J, G- (3.2) 

Then for any other solution Vv'(% t) E cl (6) the following estimate holds 

II v - v' II? < h'rtN 11 v - v' (lo*, h: =const > o (3.3) 
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where o(t) is the section t = Const of the domain n. 
To prove inequality (3.3), we will consider the solutions Y and v'of two Cauchy problems 

for system (2.8) with the initial data 

V(X.0) = Q(X), v'(X,O)= vrJ'(X), x E o(0) 
We subtract from the (2.6) corresponding to V' Eq.(2.8) for the solution Y and we use the 

notation w(X,t) = v'(X.t)- v(X,t). Multiplying the result scalarly by 2~ and using the symmetry 
of the matrices Lo and L", we arrive at the relation 

(3.4) 

R =2&f aL~(V(X,t))/ar + aLm(V(X,f))/dXm. 

Rlw = f(t)- f(v)+(LO(v')- L'(v)) z f(Lrn(V') -Lm(Y))* 

Integrating (3.4) over the domain Qt which is the part of the domain included between the 
planes t = 0 and t = conat> 0, and applying Gauss's theorem, we obtain 

t 

s 
wLDw do- 

s 
wL"w do+ 

s 
w (CL"+v,,,L")w dr= 

ss 
wRwdodt’ (3.5) 

W) OCO) IV! 0 iilU(I’) 

where r(t) is the part of the boundary r between the planes t=O and t = const. 
It is asserted that 

w( CL"+v,Lm)w'>O (3.6) 

Indeed, as has already been mentioned in Sect.2, a matrix S=S(v) &tS#O exists such 

that L"=sAS~, v,Lm =sDsT, A>O, where A and D are diagonal matrices. And it follows from 
the characteristic equation detl-~L"+v,L*li=0 that D,=c,A, (not summed over a 1. But then, 

by using the notation W* =S~W we obtain, when (3.2) is taken into account, 

w (Cb + v,,, Lm) w = w* (CA + W W* = z (c + cm) w_*.~~~w~* > o 

Furthermore, the assumptions of smoothness (3.1) and condition (2.9) of the positive- 
definiteness of Lo assure the inequality 

m~wI'<wL%v<~~w~*. m>O 
IwRw[<N,I~I*<NwL%, N=Nljm 

which enable us, together with (3.6), to obtain from (3.5) 

Ii wll; <II WI!.? + N {/I w IkWT 
0 

Hence, by using the lemma on an integral inequality (/lo/, p.123), we obtain the estimate 

(3.3). 
The unqiueness of the solution of the Cauchy problem in the class C, within any domain 

subject to the condition (3.2) follows directly from (3.3). 
By demandingthatthesolutions, the coefficients, and the right side of (2.8) should be 

continuous, and using the continued system, the growth of the first and higher derivatives 
of the solution can be estimated analogously. 

4. The transport equation. Consider the equation of the change with time of the 
amplitude of weak discontinuities propagating over the moving (c#O) characteristic surfaces. 
To derive it, we differentiate the symmetric system (2.8) with respect to time for x = COnst 
Using the notation 0 

a”!3 
QB’yji’ 

a”5 
pem=yp 

and the fact that 

a+dax'at = a*vgiataxl 

for v@E C,, as we shall indeed assume outside the surface of discontinuity, we obtain 
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On the singular surface I$~) (X,t) = 0 , corresponding to the eigen number ce) , we obtain 
from (4.1) the equation for the jumps 

(4.2) 

We will use the compatability conditions /9/ on the surface Ic, '*' = 0 of the weak discont- 
inuity 

where gAs is the metric tensor of the curvilinear coordinate system g& (A = 1,2) introduced 
on the surface $(A) = 0 in such a manner that ax/f% ] A = c(Qv, 

W) 
while the quantity &,/&(N E 

@e/at 1"~) is the derivative along the bicharacteristic. Taking account of the relations 

I!!+&1 = qe Iqyl + !7v- I@1 + b?vl b&31 

[Pe"l = - * hl 
(4.3) 

where the quantities directly ahead of the wave front are marked with a minus sign, we reduce 
(4.2) to the form 

(4.4) 

Equation (4.4) contains jumps in both the first and second derivatives of the vector of 
the solution of (2.8). To get rid of k3q&l, we multiply (4.4) on the left by CO& where oh 

are null-vectors of the symmetric matrix (-c(k) L,,” + v,Lc,gm) corresponding to the velocities 
of propagation ~$1 of the characteristic surface +O = 0. We consequently obtain (here and 
henceforth we do not sum over h ) 

o a hg 
acJ.ae - 

m a_rm ah,1 
at(*) + gAB~L@ B 

%) 
A = waw heI - w.abargv kel Id 
%M 

(4.5) 

Let the multiplicity of the eigen number c(A) be m and less then the number m* = 33 of 
the equations of system (2.8), as follows from Sect.2. Relations (4.5) then represent m 
equations for m* unknowns IqBl. In order to eliminate part of the unknowns, we use the equa- 
tion 

(--c(“‘LCz~” + vmL,,m) IqfJl = 0 (4.6) 

that follows from (2.8) and the relation [avdavl= -[qp]/c@). To do this, we note that the 
coefficient matrix (4.6) is symmetric, i.e., its left null-vectors are simultaneously also 
right null-vectors. 

Furthermore, it follows from the hyperbolicity of (2.8) that a matrix whose rows are the 
null vectors 0~~ will be non-degenerate. Therefore, the general solution of (4.6) can be 
represented in the form 

Iqfll = Qrore; P = 1, 2, . . ., m, B = 1, 2, . . ., m* (4.7) 

Substituting (4.7) into (4.5), we arrive at a system of m equations in m unknowns 

);, p, 6 = 1, 2, ::., m, A = 1, 2, a, b, y=i, 2, . . ..m* 

(4.8) 

Here 
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To derive the equations that describes the change with time of the intensity of the weak 

discontinuity on a material surface (c=O), the continued system obtained from (2.8) by the 
action of the operator v,aiaX' should be considered. 

vi&,/ay* = 0 for c= 0, relationships (4.3), 
Taking into account the formula 6vi/6t = 

the compatibility conditions, and the represent- 
ations (4.7) for the jump in the normal derivatives, we again arrive at system (4.8) with the 
coefficient matrices of the right side 

GA = wa%j3 &3 - LaRYqy - Lz$,, (P,“_ + v,vnrpv’-)} - 
0 %e 

m 
mzL,@ 7 - OhLa”e 8x g”B - %lR 

a& Wi, 
D~i=- mdJJPl;~:YG&% 

It follows from the non-linearity of the right side of (4.8) that the intensity of the 

weak discontinuity in the solution of the equations of the dynamics of the medium under con- 

sideration can become infinite in a finite time interval, i.e., the weak discontinuity is 

converted into a shock or a contact discontinuity. 

5. Strong discontinuities. We will formulate relations on strong discontinuities 
in a non-linearly-elastic micropolar medium. Let +(X, t) = 0 be the equation of the surface 
of a strong discontinuity, C = -&#/&/I V$], Y = V$/ ] VQ] is the velocity of motion and the 
unit normal, respectively. Then, for the divergent system (l.lO), the following relationships 
/0/ hold on the strong discontinuity: 

- c [cp,"] + v, [cp,"l -= 0 
Using the expresion for ma", vam, we obtain 

poc[v]+[T]v=O, c[cpl=-o 
poc[Jo]+[M]v=O, c[Jl=O 

(5.1) 

c[F]+[v]Ov=O, c[@]+[@]@v=O 

It hence follows that on the shock (c # 0) 

[F]=h@v, [@]=k@v, h=-c-‘[v], k=-c-‘[o], 

[q]=O, [J]=O 

(5.2) 

and the first two equations of (5.1) take the form 

[T] v-p&h = 0, [M] v -p&k = 0 (5.3) 

If the state of the medium F', W,cp”, J” is known ahead of the shock front with the given 

velocity of motion c, then for the solution behind the front to be unique it is necessary that 

the shock velocity differ from the velocity of the characteristic surface. Indeed, by taking 

account of (5.2) and considering the relations (5.3) as a system of equations in the quantities 

h and k 

we obtain 

f(h,k)=T(F”+h@v,W=i-kBv,$)v- 

T (P, w, q”) v - p&h = 0 

g(h,k)=M(P+h@v,Q1”+k@v,$)v- 

M (F”, @“, cp”) v - p&k = 0 

a (f, 6) - = det ca&~ - v, 
a (h. k) // 

Pm” = V,‘, CD,,‘); a, b = 1, 2, . . ., 6; m, n, i = 1, 2, 3 

On the contact discontinuity (c ~0) , the continuity of the stress and moment vectors 

[T] v = 0, [Ml v = 0 

follows from (5.1)) as does the continuity of the velocities Iv] = loi = 0. The latter relation- 

ship is a result of the assumption on the uniqueness of the mapping x = x (X,t) and cp = cp(X. t). 

In the more general case, the compatibility equations (1.2) become inhomogeneous, witha singular 

right side, and the velocity vectors can undergo a discontinuity on the contact surface. 

The author is grateful to N.D. Verveiko for discussing this paper. 
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ON THE STABILITY OF ONE-DIMENSIONAL STATIONARY SOLUTIONS OF HYPERBOLIC 
SYSTEMS OF DIFFERENTIAL EQUATIONS CONTAINING POINTS AT WHICH ONE 

CHARACTERISTIC VELOCITY BECOMES ZERO* 

A.G. KULIKOVSKII and F.A. SLOBODKINA 

The stability of the stationary solutions of hyperbolic systems of partial 
differential equations containing a point at which one of the characteristic 
velocities becomes zero, is investigated. The functions sought are assumed 
to be time and coordinate dependent, and their number is arbitrary. 

The study of stability carried out below is based on the results 
obtained in /l, 2/, according to which the behaviour of the unsteady 
perturbations near the critical point is described by a single non-linear 
partial differential equation irrespective of the number of equations in 
the initial system. The equation is written in terms of a function 
analogous to the Riemann invariant connected with the vanishing character- 
istic velocity. 

The equation is used below to examine all possible cases of continuous 
solutions of an arbitrary hyperbolic system of equations with continuous 
and discontinuous right-hand sides, and conditions are formulated under 
which the growth of perturbations near the critical point at which one of 
the characteristic velocities becomes zero, leads to the instability of 
the whole solution in toto. The investigation is carried out taking into 
account the onset and development of the perturbations connected with 
other characteristic velocities which have a constant sign within the 
region considered. 

1. Let us consider a hyperbolic system containing an arbitrary number of equations the 
unknown functions of which depend on the spatial coordinate x and the time t 

lji CUkr z, [ 
au. 
2 + c* (I+, 2) f$] = f’ (Uk, 5) (1.1) 

System (1.1) is written in the characteristic form, c'(+,z) are the characteristic 
velocities of the system, and repeated lower Latinindices denote summation from 1 to n. 

The elements of the matrix 1,' and the function c' are assumed to be continuous and dif- 
ferentiable functions of their arguments, and the right-hand sides of (1.1) are assumed to 
be piecewise continuous and may have first-order discontinuities in some planes I = const. Me 
shall assume that the first-order partial derivatives of fi(uk, 2) with respect to all arguments 
exist and are continuous wherever f(nk,z) are defined, except at the points belonging to the 
surfaces of discontinuity of these functions. 
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