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"equilibrium" phase velocity of the longitudinal sound waves.

When the internal mass moment is neglected (in the limit as y— o) from (4.3) it follows
that in the transverse waves the electromagnetic quantities (x, H, E), and in the longitudinal
waves the mechanical quantities (v, p) are the only ones perturbed.

In addition to the two types of weak perturbations discussed here, we also have a solu-
tion of (4.5) corresponding to the case when @ = 0. This wave does not propagate through
space and represents an arbitrarily small deviation in the entropy distribution from its value
in the equilibrium state. From (4.5) it follows that in the entropic wave n =0, H=E =0,
v=0 and the only non-zero perturbations are those of density and entropy.

The authors thank L.I. Sedov and V.V. Gogosov for discussing the paper.
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NON-LINEAR EQUATIONS OF THE DYNAMICS OF AN ELASTIC MICROPOLAR MEDIUM”

V.I. KONDAUROV

The non-linear equations for a continuous elastic medium with three
additional degrees of freedom associated with local rotation, are
considered. Such an elastic medium is called micropolar /l/. The exist-
ence of an elastic potential is proposed for it; thermal effects are
neglected.

The purpose of this paper is to study certain gqualtiative properties
of the equations that are closely associated with the concept of
hyperbolicity. The complete set of equations is represented as a system
of local conservation laws, closed by finite relationships yielding the
rheology of the material. The possibility of such a representation is
pbased /2, 3/ on the fact that the gradients of the particle displacment
and angle of rotation are used as a measure of the deformation. Local
conservation laws for theé compatibility of the strain and velocity fields
of fairly simple structure are formulated.

The velocities of propgation of characteristic surfaces are studied
for the dynamic equations for the general case of the material under
consideration. The existence of real velocities, the necessary condition
for hyperbolicity, results in a constraint on the form of the elastic
potential function, which is an analog of the SE-inequality /4/ in the
classical theory of non-linearly elastic media.

The system of non-linear equations being studied is reduced to symmetric
form by replacing the vector of the solution. The necessary condition
for such a transformation /5/ is the existence of an additional energy
conservation law that follows from the system under consideration. The
symmetric form of the equations enables us to formulate the sufficient
condition for hyperbolicity - the condition of convexity of the elastic
potential in its arguments. An estimate is obtained for the growth of
the solutions of the Cauchy problem and the ensuing uniqueness theorem.
The presence of the symmetric form of the system enables a general form
to be obtained for the transport equation that governs the rate of change
of a weak discontinuity along a bicharacteristic.

1. Fundamental equations. Let X be the radius-vector of a material particle of a
body "in the reference configuration x. We assume that the displacement vector u = u (X, t) and
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and the rotation vector @ = @ (X,{) are defined in x. This assumption corresponds to a
micropolar medium /1/, which is the éimplest case of a continuum with microstructure /6/. The
particles of such a medium possess additional degrees of freedom, compared with ithe classical
continuous medium, that are associated with rotation of the particle as a rigid whole. 1In the
general case this rotation is not determined by the displacement field u.

Let x =X + u be the particle radius-vector in the actual confiquration,v = (0x/3t) }x the
mass flow rate, and F=Vx and ® = Vg the gradients of the displacement and the rotation
such that dx = FdX, dp = ®dX , where.

= (0¢/3t) |x = © (1.1)

is the angular velocity vector.

If the mapping x=x(X, ¢t} and @ = @ (X, f) are twice continuously differentiable every-
where except possibly, singular surfaces, where A = det F=£(, then compatibility relation-

...... 11Ty Yelatlion

ships in the variables X, ¢ hold for the strain and velocity fields
OF/dt) |x — Vv =0, (3®/3t) |x — V@ =0
which can be written in the form

—Div(v®I)=0, %?-Div(m@l)=0 (1.2)

Ty +ha erned allas = & slo Adoramara- P R rey, (OO S
In the variables X, t the u.chLg!:ul. form of the fLelaclol

(div is the divergence in the variables x):-

2 (L F) fdiv[EFov——tveF =0
AY- I LA Al /
a 1 1 T
-bT(Td’) =+dIV(T¢®V—TQ®F )=0

We difine the matrices of components of the strain incompatibility tensors of the first
and second kinds by the expressions

K™ (X%, )=V,F™—VF™, H (X ) =V,0 " — V0" (1.3)
The following relationships héld for the continucously differentiable functions F (X, 2},
vX,?) and ® (X, t) and e (X, ¥):
KX =0, Hi (X% 1) =0 (1.4)

In fact, by differentiating the relationship (1.2) written in a Cartesian rectangular
coordinate system
FTAN N W™ty _o N0 amxhn_g
at axt at axi
with respect to X’ and X', and subtracting one from the other we obtain when the smoothness
of the field +™ (X% ) is taken into account

3Kum (X%, t)/dt=0 (1.5)

Since the nradxnnr is Fy™(X® 9=§™ when t=0, and therefore, K;

4
...... agiegnt wnen U tnerarfore Ky

the uniqueness of the solution of the ordinary differential equatlon (1.5) 1th zero lnlt al
data, the first of the relationships (1.4) follows

The validity of the seccond eguation

The validity the second equaticn in (l1.4) Y
ity tensor is Hy™ (X%, 0)=0.
In particular, it follows that relationships (

wrala+rionshing Farmilated in termg of the
relationships Iormu.ated in terms OI the

with respect to (1.2).

As can be seen from the definition of (1.3), the matrices of the components Ky™ and H™
st. The

JR, PP tho aubhamrints § 0§ ~3d only independent ¢ . The

are aul..l.ayuuut:l.:.;\. in the SUOSCripes i, j and on.y nine inaepengaentc

matrices of these independent components, written in the form

Br;i _ eijkvkpjm, Bgi —_ eijkvkwjm
where ¢* is the unit antisymmetric tensor, will be called matrices of the Burgers tensor
components of the first and second kinds.

PN, U ST ditions follow from the s and v

Therefore, the strain bUlllPd\.J.ULJ.J.L_y conditions follow from the strain and v
compability conditions and are formulated as the conditons that the incompatibili
or Burgers tensor should equal zero.

ocity
OC1TY

T
ty tensors

e
1

Let pg, p De the density of the body in the reference and actual con urations.

£1 e
£ig
mass conservation law for a micropolar medium can be written in the form /1/
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pA = p;, A=detF (1.6)

Let J=J(X, t) and J =1J7 be a symmetric positive-definite tensor of the density of
the moment of inertia of a micropolar medium. We assume for it that

aJ
=292 (Ri; = ean0") (1.7

This assumption is the analog of relations for the rate of change of the moment of inertia
of an absolutely rigid body

I={ty-pi—yendy

where y =y (t) is the radius-vector of a point in the frame of reference associated with the
centre of mass of the volume under consideration, and I is the unit tensor. If R=R(¢) is
an orthogonal tensor (RRT =I) describing the body rotation and being the analog of the axial
vector ¢ , then y = Ry,, where yo=y(0) and y = Ry, = RRTRy, =Qyand J — QJ 4 JQ = 0.

The divergent form of the local conservation law for the density of the moment of inertia
is written in the Euler variables x, t in the form

2EN| 4 div(pI ® v)=p(QF — IR)

Let tT=1(v,X,!) be the stress vector, and m =m (v, X,?) the vector of a moment defined
on a piecewise-smooth surface ¢ (X,?)=0 with the normal v = V¢/|V{|. The vectors tr and m
characterise the density of interaction of parts of the body separated by the surface under
consideration. The fundamental Cauchy theorem defines the Piola-Kirchhoff stress tensor of
the first kind and the moments tensor

r=TX,t)v, m=MX, v, TsTT, M%=MT

Let b and | be the density of the mass forces and moments. Then the local momentum and
angular momentum conservation laws for a micropolar medium have the following form:

a(J

po-—-—-DlVT pob, po —-DivM=po§+pol (1.8)
The vector { in the angular momentum equation is an accompaniment to the Cauchy stress
tensor ATMTFT so that pol; = e;;T*F,’.
Furthermore, we will assume that the material under consideration is hyperelastic, and
for simplicity, homogeneous, i.e., an elastic potential W exists such that
W=W(F,®,q) (1.9)
aw oW oW
T =po 35, M=Poﬁ. ;"__86'
We will neglect thermal effects in the strain of such a medium. The constraints
W(QF detQ- Q(D detQ Q) =W (F, @, @)

€ijk 37— BF F& +'——_0! QQT=I

are imposed on the potential w.

The first of these is the property of objectivity ——the condition of invariance of the
elastic potential relative to orthogonal transformations of the actual configuration. The
second of the constraints follows from the expression pol; = €;;T"F,’ and relations (1.9).
Note that in the case of infinitesimal strains, the relation

W=W(y,®), y=F—eg
follows from the second constraint.

Therefore, the complete set of equations for the medium being studied can be written in
the form of a set of differential conservation laws (1.1), (1.2), (1.7) and (1.8) and the
finite rheological relations (1.9). The set of differential equations can be represented in a
Cartesian rectangular coordinate system in the form

ag ° ap,m
(;’ +';xa_m=fﬂ-v =1,2,...,33, m=1,2,3 (1.10)

(Pa°={Povlv Poju(l)m ‘P" Falv oﬂ" Jij}

@™ ={T*", M'"™, 0, v'8,™, w'8,™, 0}

fa = (Pob" Po (l' + ;‘.)1 “?{v 0, 0, Qiana - Jianaj)

In expanded form the quasilinear system (1.10) can be written as follows
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99, oF ;i ' oD, A
= O T oxd ' T %7 (1.11)
'  aw oFJ aw ) w9
a3 aF QF ;75 oF % 7 5x™ oF Bg. sx  °
m ) n LomTTg
7.0 dw, aw OFJ AW o J
¢ o0 BF 7 5x™ 901007 ax
Lalid a‘P
- X v 6XJ '-li+§\+e|abjgmmJ
m

a"ii = wbre o ra.b
5 = Ciba® J; Eapjd { @

For the sequel it is convenient to use (l1.ll) in the matrix form

du, du
(-] m (]
T+Baﬂ(uv)m-=fa(uv) (1.12)
U = {v;, @, @y, F'j, O}, Ju}
a By=12,. 33,z ,m=1,23
2 Hunarhalicitry sconditdians Tar ue {invs [ Lhin s meale .
LD A AR A N A Nh de e A LAD . et us J.lecabd.kdu e \_Ll: quc:LJ.uu L)L Lile llyPc pel

- L
of (1.12) which is closely associated with the correctness of the Cauchy problem. By
tion /8/, system (1.12) is hyperbolic if all the eigennumbers of the matrix v,Bg™, where v,
is an arbitrary unit vector, are real and the number of their corresponding linearly independ-
ent left eigenvectors of this matrix equals the number of equations in (1.12) for any given vy,

We will obtain an equation for the eigennumbers, or in other words, for the velocities
of propagation of the characteristic surfaces. Let ¢ (X, #) = 0 be the equation of such a
surface, which is simultaneously a surface of possible weak discontinuities /8/, ¢ = —dy/ot/
| V|, v = V/ | V| is the velocity of propagation and the unit normal. Then, using the geometric
and kinematic compatibility conditions /9/, we obtain on the surface of weak discontinuity

0, oF } 3

c[—]._-o c[ 6:]"'[;,]"1—0 (2.1)
001 dw

[ ] ' [dv ]v =0

[ av' aw I 0Fﬁj 1 2w r gonj 1

o[ 5] + v [ 5] + v [ ]+

W [fm_,1=0

Ym3F oe, | &
mY¥; L 4

@ AW oF i W dtD i
cl»“[—"] 7
o | T ee or | W T +
d [ aw} ] [ it
Vv : O [+ i =0
m 60mtdtpj v av
where [duq/dv] is the jump in the normal derivative of the solution defined by the formula
OQua/dv = v;0uq/dX".

The non-trivial solution [fuq/dv] of the homogeneous linear system (2.1} exists if and
only if the determinant of the coefficient matrix equals zero, i.e.,

det |l — clop + viBag"ll =0 (2.2)
It is seen directly from (2.1) that ¢ =0 is a multiple root of (2.2). If ¢ 0, then
i 2.1
it follows from ( ) . W 2.3
det "C o — Vo o557 vﬂ“=0 )
Pm Py i
=(F, O Mp=1,2,...,8 imn=12,3

whose solvability condition is aw

("m——ap o vﬂ) atah >0 (2.4

PUNT R D L. SR R, [ A 211 A _s D
tion directions determined by the normal vm, and all g* 5= 0.

4

The constraint (2.4) on the form of the elastic potential W is a necessary condition for
hyperbolicity and the analog of the SE-condition in the non-linear theory of elasticity
/4I 7/.

If inequality (2.4) holds, then system (l1.ll) possesses real propagation velocities of
the characteristic surfaces. But it is impossible to say anything about the existence and
linear independence of the eigenvectors of the matrix vaGf‘ by using only (2.4).

We will formulate a sufficient condition for hyperbolicity. To do this, we will reduce
system (1.10) to symmetric form as in /2, 3/.

Direct substitution confirms the validity of the equations (E is t

H
)
.
B,
[
e
o
Q
e
o
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Vafo = po(b'v; + F'e), vadee” = d (poF) (2.5)
Vade™ = d (I'""v; + M™w))
(E =W + vp'/2 + J9 0,0;/2)

Here
Vo = {vi, @5y — Polis Tijs Mijy, — Mapow; )} (2.6)
Rewriting the second and third equations in (2.5) in the form
dL’ = d (vePa’ — pok) = ‘qudvﬂ
dL™ =d (vaps" — Timy; — Mi"0,) = ¢o" dvy

we can write system (1.10) in the form

a aL° 8 aL™
T X ey e (2.7

If we use the notation

Lq'ao = 6’L°/6v.,6vﬁ, Laﬁo = Lwo
Log™ = L™ /dvgdvg, Lgg™ = Lgs™
then from (2.7) we obtain the desired symmetric system

av, v
Lop—F — Loy =fa (2.8)
with the vector of the solution va whose relation to the vector ug is determined by (2.6).

We now note that if the matrix Leg° is positive~definite, then a non-degenerate trans-
formation exists that simultaneously reduces the two symmetric matrices Lgg° and vmlag™ to
diagonal form, where vm is the normal vector. 1In this case system (2.8) is known to be
hyperbolic.

The positive-definiteness of Lgg° is equivalent to the convexity of the function £° in
the arguments vg. The Legendre transformation of an arbitrary convex function M (vz) has
the form H (24) = Zata — M (Va), Zo = 0Mi0vy , and is itself a convex function. For the function
1° it equals H{(gs") = pyE. Because p, >0 and in view of the positive-definiteness of the
tensor JY, the total energy E will be convex function provided the elastic potential W =

W (F,), @, ¢') is convex, i.e.,

FW pp %
g, b >0, VATSE0 (2.9)

Ty = {Faiv q)ais (Pt)

It also follows from the convexity of W (nyx) that the transformation of the initial
system (1.12) into the symmetric system (2.8), associated with replacing the solution vector
Ue = {ts 0, ¢, Fi, @, ;) by the vector (2.6), is non-degenerate, i.e.,

det || dua/dvg || = det || Gua/dgy° || det | dpy>/dvg | 5= 0

Comparing the sufficient condition (2.9) with the necessary condition (2.4), it can be

seen that (2.9) is known to be stronger than (2.4).

3. Estimation of the growth of the solutions of the Cauchy problem. Let a
symmetric hyperbolic system (2.8) be defined in a four-dimensional open domain Q of the
variables X,t. The boundary dQ consists of a three-dimensional domain ©(0) in the plane
t=0., and of a piecewise-smooth surface [ (X, t) =0 located for ¢ >0 . We shall assume that
VI % 0, within the domain T < 0 and outside it T > 0. Let us also assume that

vy (X, 1), Lag® (vy (X, 2)) _ (3.1)
Log™ (vy (X, 1)), fu (vy (X, 8)) = €, (Q)

At any point (X,?) & T let the normal to the surface I =0 1lie within the cone of
normals to the characteristic surface corresponding to the maximum, in absolute value, ¢ =

c(v (X,8),%),v=7VI/|¥[|, i.e., the Hamilton-Jacobi inequality holds /8/
: 1 ar
G(X,t)>=]c(wy(X, 1), v}, G=ml-—a-t- >0 (3.2)

Then for any other solution &y (X, )& (C, (§) the following estimate holds

[v—v 2 NetN [v—v' |2, N=const >0 (3.3)



296

Q
Ivid= § valigvsdo
()

where o () is the section ¢ = const of the domain Q.
To prove inequality (3.3), we will consider the solutions v and v’ of two Cauchy problems
for system (2.8) with the initial data
viX,0)=v(X), v(X,0)=w(X), X=0(0)
We subtract from the (2.8) corresponding to v/ Eq.(2.8) for the solution v and we use the
notation w(X,n=v (X, —v(X, . Multiplying the result scalarly by 2w and using the symmetry
of the matrices L° and L™ , we arrive at the relation

2 wLewy 9 (wL™w) = wRw (3.4)
ot ax™

R = 2R; 4+ 0L° (v (X, B))f6t + aL™ (v (X, ))}oX™.
Ryw = E(v') — [ (v) 4 (L°(v)) — L°(v)) %"t_' + @& (v)=L"(v) %
X

Integrating (3.4) over the domain Q; which is the part of the domain included between the
planes ¢t=0 and ¢ =const>>0, and applying Gauss's theorem, we obtain
t
SwL"wdm-—- S wlow do + Sw(GL°+mem)wdl‘=S S w Rwdo dt’ (3.5)
(t) @(0) T o w(t)

where T'(t) 1is the part of the boundary I' between the planes =0 and (= const.
It is asserted that

w(GL® +v, L™ w>0 (3.6)
Indeed, as has already been mentioned in Sect.2, a matrix S =§(v) detS= 0 exists such

that L°® = SAST, v,L™ = SDST, A>0, where A and D are diagonal matrices. And it follows from
the characteristic equation det§ — cL® + vpL™ i = 0 that Dgq = ¢gA,, (Not summed over a ). But then,

by using the notation w* = 8Tw we obtain, when (3.2) is taken into account,
W(GL+ v, L") w = w* (GA + D) w* = (G + ¢,) wy*A qwg® >0
a

Furthermore, the assumptions of smoothness (3.1l) and condition (2.9) of the positive-
definiteness of L° assure the inequality

mlwEL WS Miw(E, m>0
|wRw [ Ny | W< NwL°w, N =N;jm

which enable us, together with (3.6), to obtain from (3.5)
t
Iwi <Iwht+ x §iwlde
0

Hence, by using the lemma on an integral inequality (/10/, p.123), we obtain the estimate
(3.3).

The ungiueness of the solution of the Cauchy problem in the class (, within any domain
subject to the condition (3.2) follows directly from (3.3).

By demanding that the solutions, the coefficients, and the right side of (2.8) should be
continuous, and using the continued system, the growth of the first and higher derivatives
of the selution can be estimated analogously.

4. The transport equation. Consider the equation of the change with time of the
amplitude of weak discontinuities propagating over the moving (¢ %= 0) characteristic surfaces.
To derive it, we differentiate the symmetric system (2.8) with respect to time for X == const
Using the notation

£ o . oL,
__ B m__ 8 _ af
B="7 Po = 5w Lagy= ER

aL™ 9,
L‘;‘%"=—§%’ fua=ﬁf,§-
and the fact that
d%vg/0X 0t = 6*vg/otoX'
for v & C,, as we shall indeed assume outside the surface of discontinuity, we obtain

o c?qE aq s
Lap 5t + L3p —zim =fop— Lasvsdy— Lapvivps™
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On the singular surface ™ (X,t) =0 , corresponding to the eigen number ¢® , we obtain
from (4.1) the equation for the jumps

° aq g,
Lap |5 | -+ L [ 557 | = Fo— Las [9904] — Ly [9vPs™) (4.2)
We will use the compatability conditions /9/ on the surface VY* =0 of the weak discont-
inuity
8ap il 8gg]
kiR (Y VY -8
[ a']- C()[GV ]+ 5%
% o, dig) axi
)= (3] i 2
X %oy %o

where gAB is the metric tensor of the curvilinear coordinate system !Ia) (A =14,2) introduced
on the surface ® = in such a manner that gX/gt |a = ¢My, while the quantity 8gp/6t™ :=
Yoo

0Ogg/0t lya) is the derivative along the bicharacteristic. Taking account of the relations
lovgs) = gs™ lgv] + ¢y lgsl + lgy) [gpl (4.3)
v
[Pe™] =— 5 [gs]

where the quantities directly ahead of the wave front are marked with a minus sign, we reduce
(4.2) to the form

o m . [ % « 8lgp)
(— C(h)Lag -+ ‘meag) [—5\’—] -+ Laﬁw -+ (4.4)

ax™ @lgp '
§APLYy 5o 1 = tos [45] — busv [95] [94]
™) @)

. _ v _ -
ap = fap — 2Lapygy +'F%L:Mv — Lapwpy
° v,
baﬂv=Laﬁv—c1!")'Lc’:;w
Equation (4.4) contains jumps in both the first and second derivatives of the vector of

the solution of (2.8). To get rid of [dgp/dv], we multiply (4.4) on the left by wye Where wyy

are null-vectors of the symmetric matrix (—c® Log° + viLeg™) corresponding to the velocities
of propagation ¢®™ of the characteristic surface Y™ = 0. We consequently obtain (here and
henceforth we do not sum over J )

m aX™ 9lgp)
B B vl
oy %oy

o 8

Wralas 6:75] + g4Pwnal = Wnaflap [98] -— Oradapy [9p] [74) (4.5)

Let the multiplicity of the eigen number ¢ be m and less then the number m* = 33 of
the equations of system (2.8), as follows from Sect.2. Relations (4.5) then represent m
equations for m* unknowns [gg). In order to eliminate part of the unknowns, we use the equa-
tion

(—eNLgg® + vmLag™) lIgpl = 0 (4.6)

that follows from (2.8) and the relation [dvg/dv]l = —[gl/e®, To do this, we note that the
coefficient matrix (4.6) is symmetric, i.e,, its left null-vectors are simultaneously also
right null-vectors.

Furthermore, it follows from the hyperbolicity of (2.8) that a matrix whose rows are the
null vectors wpe will be non~degenerate., Therefore, the general solution of (4.6) can be
represented in the form

lgpl = Quogi p =1,2,...,m,B=1,2 ..., m* (4.7)

Substituting (4.7) into (4.5), we arrive at a system of m equations in m unknowns

5Q aQ

Anp 0‘-‘) + By = =CuQu + Dy Qu@y, (4.8)
o %a)

Lpt=12...,md4=12 a8, y=1,2,...,m*

Here

Ay = pauplop, A= A

A ox™
B;u = u)mmugLZ'ﬁgAB 3;? N Bj:, == B:;,
»)
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c émﬂﬁ rm ax™ am_uB

—_ T At PR ¢ o -
A = GoapungWys —— Wiy W — Wpgligp ay_B Er gar
) [eA]

Dy, = onatnupzybagy

To derive the equations that describes the change with time of the intensity of the weak
discontinuity on a material surface (¢=0), the continued system obtained from (2.8) by the
action of the operator v;,0/0X' should be considered. Taking into account the formula v,;/6t =
vidvi/0y4 =0 for c¢=0, relationships (4.3), the compatibility conditions, and the represent-
ations (4.7) for the jump in the normal derivatives, we again arrive at system (4.8) with the
coefficient matrices of the right side

Crn = 0nx0up {fes — Lapvdy — L3y (P7 + vivmby)} —

o by Ix™ o,
COAaLaﬂ G:P —(L)ML;nﬂ 3 B AB a—u’-f—
Y Yr
Dipg = — 1oy Ly Vm

It follows from the non-linearity of the right side of (4.8) that the intensity of the
weak discontinuity in the solution of the equations of the dynamics of the medium under con-
sideration can become infinite in a finite time interval, i.e., the weak discontinuity is
converted into a shock or a contact discontinuity.

5. Strong discontinuities. We will formulate relations on strong discontinuities
in a non-linearly-elastic micropolar medium. Let y(X,¢) =0 be the equation of the surface
of a strong discontinuity, ¢ = —0¢/0t/ | V|, v = V§/| V| is the velocity of motion and the
unit normal, respectively. Then, for the divergent system (1.10), the following relationships
/8/ hold on the strong discontinuity:

— clga’l + v [@a™] =0
Using the expresion for ¢g°, 2", we obtain
poc[V] +[T]lv=0, clg]=0 (5.1)
poc [Jo] + [M]v=0, c¢[J]=0
c[Fl+[v]1®v=0, c[@]+[0]®v=0
It hence follows that on the shock (¢ == 0)

[F]J=h®v, [®]=k®v, h=—cl[v], k=—c"[a], (5.2)
(¢]1=0, [J1=0

and the first two equations of (5.1) take the form
[T]v —pocth =0, [M]v —poc?k=0 (5.3)

1f the state of the medium F?° ®° @°, J° is known ahead of the shock front with the given
velocity of motion ¢, then for the solution behind the front to be unique it is necessary that
the shock velocity differ from the velocity of the characteristic surface. Indeed, by taking
account of (5.2) and considering the relations (5.3) as a system of equations in the quantities

h and k [ k) =T(F+h®v, 0 ~kSv,¢)v—
T(F°, ®°, ¢°) v — pocth =0
EMK)=M(F +h®v,®°+kOv,¢)v—
M (F°, ®°, @°) v — poc’k =0
we obtain

a8 2w
m == det Czﬁaﬂ - Vi _——apmaapnb ‘Vn! #0
P ={Fn, ) a.p=1,2...,6,mn i=1,23

on the contact discontinuity (c=0) , the continuity of the stress and moment vectors

iTIv=0, (Miv=0
follows from (5.1), as does the continuity of the velocities Iv]l = {wl = 0. The latter relation-
ship is a result of the assumption on the uniqueness of the mapping x = x(X,t) and ¢ = ¢ (X, ¢).
In the more general case, the compatibility equations {(l1.2) become inhomogenecus, with a singular
right side, and the velocity vectors can undergo a discontinuity on the contact surface.

The author is grateful te N.D. Verveiko for discussing this paper.
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ON THE STABILITY OF ONE-DIMENSIONAL STATIONARY SOLUTIONS OF HYPERBOLIC
SYSTEMS OF DIFFERENTIAL EQUATIONS CONTAINING POINT§ AT WHICH ONE
CHARACTERISTIC VELOCITY BECOMES ZERO

A.G. KULIKOVSKII and F.A. SLOBODKINA

The stability of the stationary solutions of hyperbolic systems of partial
differential equations containing a point at which one of the characteristic
velocities becomes zero, is investigated. The functions sought are assumed
to be time and coordinate dependent, and their number is arbitrary.

The study of stability carried out below is based on the results
obtained in /1, 2/, according to which the behaviour of the unsteady
perturbations near the critical point is described by a single non-linear
partial differential equation irrespective of the number of equations in
the initial system. The equation is written in terms of a function
analogous to the Riemann invariant connected with the vanishing character-
istic velocity.

The equation is used below to examine all possible cases of continuous
solutions of an arbitrary hyperbolic system of equations with continuous
and discontinuous right-hand sides, and conditions are formulated under
which the growth of perturbations near the critical point at which one of
the characteristic velocities becomes zero, leads to the instability of
the whole solution in toto. The investigation is carried out taking into
account the onset and development of the perturbations connected with
other characteristic velocities which have a constant sign within the
region considered.

1. Let us consider a hyperbolic system containing an arbitrary number of equations the
unknown functions of which depend on the spatial coordinate x and the time t

) du, du. ,
L (e, ) [ S + ¢ 0y 2) T | = (11,2 (.1

System (l1.1) is written in the characteristic form, ¢ (uy, 2) are the characteristic
velocities of the system, and repeated lower Latin indices denote summation from 1 to n.

The elements of the matrix /;' and the function ¢! are assumed to be continuous and dif-
ferentiable functions of their arguments, and the right-hand sides of (l1.l) are assumed to
be piecewise continuous and may have first-order discontinuities in some planes z = const. We
shall assume that the first-order partial derivatives of f!(u,, z) with respect to all arguments

exist and are continuous wherever f(uk,z) are defined, except at the points belonging to the
surfaces of discontinuity of these functions.
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